A Model for Concepts Extraction and Context Identification in Knowledge Based Systems

نویسندگان

  • Andre Bortolon
  • Hugo Cesar Hoeschl
  • Christianne C. S. R. Coelho
  • Tânia C. D'Agostini Bueno
چکیده

Information Retrieval Systems normally deal with keyword-based technologies. Although those systems reach satisfactory results, they aren’t able to answer more complex queries done by users, especially those directly in natural language. To do that, there are the Knowledge-Based Systems, which use ontologies to represent the knowledge embedded in texts. Currently, the construction of ontologies is based on the participation of three components: the knowledge engineer, the domain specialist, and the system analyst. This work demands time due to the various studies that should be made do determine which elements must participate of the knowledge base and how these elements are interrelated. In this way, using computational systems that, at least, accelerate this work is fundamental to create systems to the market. A model, that allows a computer directly represents the knowledge, just needing a minimal human intervention, or even no one, enlarges the range of domains a system can maintain, becoming it more efficient and user-friendly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connections, Communication and Collaboration in Healthcare’s Complex Adaptive Systems; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”

A more sophisticated understanding of the unpredictable, disorderly and unstable aspects of healthcare organisations is developing in the knowledge translation (KT) literature. In an article published in this journal, Kitson et al introduced a new model for KT in healthcare based on complexity theory. The Knowledge Translation Complexity Network Model (KTCNM) provides a fresh perspective by mak...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

A Context-aware Architecture for Mental Model Sharing through Semantic Movement in Intelligent Agents

Recent studies in multi-agent systems are paying increasingly more attention to the paradigm of designing intelligent agents with human inspired concepts. One of the main cognitive concepts driving the core of many recent approaches in multi agent systems is shared mental models. In this paper, we propose an architecture for sharing mental models based on a new concept called semantic movement....

متن کامل

Using Context-based Statistical Models to Promote the Quality of Voice Conversion Systems

This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...

متن کامل

Knowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring

Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...

متن کامل

Resilient Supplier Selection in a Supply Chain by a New Interval-Valued Fuzzy Group Decision Model Based on Possibilistic Statistical Concepts

Supplier selection is one the main concern in the context of supply chain networks by considering their global and competitive features. Resilient supplier selection as generally new idea has not been addressed properly in the literature under uncertain conditions. Therefore, in this paper, a new multi-criteria group decision-making (MCGDM) model is introduced with interval-valued fuzzy sets (I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006